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ABSTRACT

Although public health risk assessments for Listeria monocytogenes (Lm) have been published for various foods, firm-level
decision making on interventions targeting Lm involves considerations of both public health and enterprise risks. Smoked
seafood is a ready-to-eat product with a high incidence of Lm contamination and has been associated with several recalls. We
used cold-smoked salmon as a model product to develop a decision support tool (the regulatory and recall risk [3R] model) to
estimate (i) baseline regulatory and recall (RR) risks (i.e., overall risks of a lot sampled and found positive for Lm, e.g., by food
regulatory agencies) due to Lm contamination and (ii) the RR risk reduction that can be achieved through interventions with
underlying mechanisms such as reducing the prevalence and/or level of Lm and retarding or preventing Lm growth. Given that a
set number of samples (e.g., 10) are tested for a given lot, the RR risk equals the likelihood of detecting Lm in at least one
sample. Under the baseline scenario, which assumes a 4% Lm prevalence and no interventions, the median predicted RR risk for
a given production lot was 0.333 (95% credible interval: 0.288, 0.384) when 10 25-g samples were tested. Nisin treatments,
which reduce both the prevalence and initial level of Lm, reduced RR risks in a concentration-dependent manner to 0.109 (0.074,
0.146) with 5 ppm, 0.049 (0.024, 0.083) with 10 ppm, and 0.017 (0.007, 0.033) with 20 ppm. In general, more effective
reduction in RR risks can be achieved by reducing Lm prevalence than by retarding Lm growth; the RR risk was reduced to
0.182 (0.153, 0.213) by a 50% prevalence reduction but to only 0.313 (0.268, 0.367) by bacteriostatic growth inhibitors.
Sensitivity analysis indicated that prevalence and initial level of Lm and storage temperature have the greatest impact on
predicting RR risks, suggesting that reliable data for these parameters will improve model performance.

HIGHLIGHTS

� A modeling framework for assessing regulatory and recall risks was developed.
� Reducing Lm prevalence drastically reduces regulatory and recall risks.
� Retarding growth of Lm has a marginal effect on regulatory and recall risks.
� Nisin treatments are most effective in reducing regulatory and recall risks.
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Listeria monocytogenes (Lm) is a foodborne pathogen
that causes listeriosis, a potentially life-threatening disease
that leads to 260 deaths annually in the United States (11).
The rate of listeriosis has been constant over the last decade,
and the invasive form of the disease is most likely to occur
in sensitive populations, including pregnant women (who
can pass it on to their newborns) and elderly and
immunocompromised individuals (11, 32, 39). Lm is
responsible for 19% of deaths due to consumption of
contaminated food in the United States (72). Ready-to-eat
(RTE) foods that are usually consumed without further

listericidal steps beyond packaging have been (i) considered
of particular significance for sporadic foodborne listeriosis
and (ii) associated with a number of outbreaks (25, 29, 61).
As a type of RTE food, smoked seafood (including cold-
smoked salmon) has been classified in the high-risk
category for listeriosis (more than five cases per billion
servings) because these products (i) have been reported to
be contaminated with Lm at high incidence and (ii) are able
to support the growth of Lm to high levels during extended
storage at refrigeration temperature (37, 82). The prevalence
of Lm among smoked seafood products reported since the
1990s differs across product types, countries, and years and
ranges from 0 to 80.3% (38). Lm contamination of RTE
seafood products has been responsible for product recalls in
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various countries (e.g., United States and the European
Union [EU]–European economic area [EEA]). For example,
3.7 and 11.5% of the foodborne outbreaks (1998 to 2017)
and food product recalls (2017 to 2020), respectively, in the
United States were reported to be caused by Lm
contamination of seafood-associated products (12, 80). In
the EU-EEA, 42% of seafood-related notifications reported
by the Rapid Alert System for Food and Feed between 2008
and 2016 were related to Lm, and 19% of seafood-
associated foodborne diseases outbreaks between 2008
and 2015 were caused by Lm (71).

Elimination of Lm in smoked and RTE seafoods is
challenging (and essentially not feasible) because Lm is
widely distributed in a variety of settings, including natural
and urban environments (58), food processing facilities (26,
78), and consumer homes (22). However, continuous
improvement of the safety of smoked seafood products
with respect to Lm contamination is possible and needed
and typically involves a variety of control strategies,
targeting (i) the reduction of Lm prevalence and contam-
ination levels among food products, (ii) the prevention or
reduction of Lm growth on contaminated food products, and
(iii) science-based education for at-risk populations and
associated caregivers (37). Interventions for reducing the
prevalence of Lm may include raw material controls, the
implementation of environmental monitoring programs, and
stringently following good manufacturing practices and
sanitation standard operation procedures (37). Postlethality
treatments such as irradiation (87) and high pressure
processing (54) and product reformulation involving
bacteriocins (40, 59, 75, 76), bacteriophages (33, 35),
organic acids (40, 62, 63), or competitive lactic acid
bacteria (23, 60) can also retard or prevent growth or even
reduce the level of Lm on contaminated food products.
Examples of more commonly used postlethality treatments
for cold-smoked seafood in the United States include
applications of lactate or diacetate and nisin, a U.S. Food
and Drug Administration (FDA)–approved bacteriocin that
is active against Lm (72).

Quantitative risk assessments play an important role in
informing risk management associated with Lm in smoked
seafoods by linking food safety research findings to industry
practices to eventually improve public health (2). By
assessing the impact of variation in parameters due to
inherent heterogeneity or uncertainty regarding model
outcomes, guidance can be provided to improve industry
practices and select appropriate interventions for controlling
Lm. Various Lm quantitative risk assessments have been
conducted for RTE foods in general (82) and specifically for
cold-smoked salmon (20, 65, 66). Most of these risk
assessment models were designed to provide guidance for
controlling Lm contamination of food products and were
based on public health measures (e.g., the average number
of human listeriosis cases caused by one serving) as
outcomes, and many of these models have suggested that
practices that retard or prevent the growth of Lm are most
effective for reducing the risk of human listeriosis. These
models typically include a dose-response function, which
provides a quantitative relationship between the level of Lm
exposure and the likelihood of human listeriosis. However,

the dose-response compartment of such models typically
has a high level of uncertainty, and precise dose-response
relationships may be difficult to derive for a variety of
reasons. For example, limited or no human dose-response
data are available for many pathogens, and these dose-
response curves have to heavily rely on animal data.
Development of biologically plausible dose-response mod-
els requires knowledge of the infection pathways, which
may differ across subpopulations (e.g., pregnant women and
their newborns versus other individuals) and pose a
challenge for estimating public health outcomes associated
with many foodborne pathogens, including Lm (6).

Production company decision making on interventions
targeting Lm typically involves both public health and
enterprise risk considerations. Different regulatory conse-
quences stem from a sampled production lot that tests
positive for Lm. In the United States, an Lm-positive test
on a product lot that is still under full control of the
processor would likely trigger a stock recovery, whereas
an Lm-positive test on a production lot that has been fully
or partially released into commerce would typically lead to
a product recall. We thus defined the term regulatory and
recall (RR) risk as the overall risk of a production lot being
sampled and tested positive for Lm (e.g., by regulatory
agencies), regardless of the possible regulatory conse-
quences. To facilitate improved decision making regarding
Listeria control strategies, we developed a modeling
framework that allows for assessment of RR risks and
the impact of various interventions on reducing these risks.
We developed the RR risk (3R) model to estimate the RR
risks associated with presliced, vacuum-packed cold-
smoked salmon products and to identify and/or optimize
interventions to lower this risk. Cold-smoked salmon was
selected as a model product because (i) it has been
frequently associated with Lm contamination (46), (ii) it
supports the growth of Lm (19, 36), and (iii) Lm
contamination of cold-smoked salmon has been used as
a case study in previous quantitative risk assessments (43,
66). Nisin was selected as a model antimicrobial to assess
the impact of antimicrobial treatments on RR risks because
this bacteriocin is commonly used in food and its efficacy
against Lm on cold-smoked salmon has been extensively
studied; hence, substantial data for model development
were available (13, 40, 76). This 3R model will allow
industry to use information on both public health and
enterprise risk implications of various interventions when
driving continuous improvement with regard to Lm control
in RTE foods. The 3R model introduced here may have
reduced uncertainty as compared with public health
models, which may further facilitate science-based deci-
sion making.

MATERIALS AND METHODS

Model overview. The 3R model is a probabilistic decision-
support tool developed to estimate the risk of recalls or other
regulatory consequences due to food product contamination with
Lm. The 3R model was developed with the R Statistical
Programming Environment (R Core Team, Vienna, Austria) v.
3.5.2 (70); data and R codes used are available on GitHub (https://
github.com/FSL-MQIP/RegulatoryAndRecallRiskModel_
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Listeria_ColdSmokedSalmon.git). The model encompasses the
whole shelf life of vacuum-packed, RTE cold-smoked salmon,
including storage at the processing facility, retail stores, and
consumer homes. The model includes four subprocesses: (i) initial
Lm contamination of cold-smoked salmon products at the end of
processing (i.e., zero days of storage), (ii) die-off and growth
kinetics of Lm on contaminated products throughout the shelf life,
(iii) sampling of products (e.g., by food regulatory agencies) at the
facility, retail stores, and/or consumer homes (under rare but
possible circumstances, such as in cases of consumer complaints
or outbreak investigations), and (iv) detection of Lm on the
collected samples, which is an essential part of the model because
it determines whether regulatory consequences (e.g., recalls)
should be initiated.

In the model simulation, 1,000 production lots of cold-
smoked salmon products are generated, each containing 10,000
packages. The storage temperature of a single package is assumed
to be constant over the shelf life (see Table 1 for details on all
model parameters). The model outcome is the RR risk of a
production lot of cold-smoked salmon product produced under a
given scenario. Details on the modeling process (see Fig. 1) are
described specifically in the following sections.

Simulation framework. In our 3R model, variability refers
to the irreducible, inherent variation of the studied system,
whereas uncertainty arises from the lack of knowledge, which can
be reduced by acquisition of additional information (56). Although
both uncertainty and variability contribute variation to model
outcomes, interpretation with respect to the uncertain and variable
components of the model may provide different insights for
guiding industry practices; key sources of variability are typically
useful for identifying interventions, and key sources of uncertainty
are typically useful for prioritizing additional data collection and/
or research. Therefore, we modeled variability and uncertainty
separately, as also detailed by National Research Council (55) and
Codex Alimentarius Commission (15) documents on risk
assessments, by using a second-order Monte Carlo simulation
framework, consistent with a number of previous risk assessments
(20, 64, 66, 83, 85). We assumed that variability exists across
different packages within a given lot (e.g., because different
packages may be exposed to different temperatures during
distribution) and that uncertainty exists across different lots
(e.g., typically due to insufficient data on the actual initial
contamination prevalence for each lot). This dissection of
variability and uncertainty was mainly based on considerations

FIGURE 1. Schematic of the 3R model. Only a single production lot (lot i) is shown for clarity of demonstration of the subprocesses. The
same schematic is applicable to all production lots. Red rectangles delineate distinct subprocesses. Bold rectangles delineate variable
parameters. Bold dashed rectangles delineate uncertain parameters. Shaded rectangles delineate parameters for which the values are
either fixed or determined conditional on the values of other parameters. Rectangles without shading delineate user inputs. Solid arrows
indicate stochastic dependences, and dashed arrows indicate logic links. All model parameters are described in detail in Table 1. Nijk

denotes the number of Lm cells in the jth package of the ith production lot on the kth day after the end of processing. Testijk denotes the
binary (presence or absence) result of Lm testing for the jth package of the ith production lot on the kth day after the end of processing.
Samplingil denotes the lth simulated sampling of the ith production lot, which has a binary result (whether at least one package was
sampled and tested positive for Lm) designated as resultil.
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on the sufficiency of existing data for modeling various factors.
Consequently, for the variables of storage temperature, initial
contamination level, maximum growth rate at the reference
temperature (258C), and nominal minimum growth temperature,
the variability component was modeled by characterizing the
variation across different packages based on a parametric
distribution, and the uncertainty component was modeled by
allowing the hyperparameters of this distribution to vary across
different lots in their own parameter space. The contribution of
other product characteristics (e.g., pH, water phase salt content,
and phenolic compound concentration) to the model outcome was
accounted for through the variability and uncertainty of the
maximum growth rate at the reference temperature (20). Lot-level
factors, including prevalence of Lm contamination and proportion
of contaminated products with each of the three Lm serotypes
commonly associated with cold-smoked salmon production
(serotypes 1/2a, 1/2b, and 4b), were allowed to vary only across
lots; the variation of these factors was generally considered
uncertain because their associated distribution was inferred from
limited data. The variability of maximum population density of
Lm across packages within a given lot was modeled with no
uncertainty because (i) substantial data were available for inferring
the variability distribution and (ii) this factor was assumed less
important for predicting RR risks because in most cases any
samples with Lm levels at the maximum population density,
regardless of its actual value, will have the same likelihood of
yielding a positive test. The dissection of the variability and
uncertainty components of the model resulted in classification of
the model parameters into variable and uncertain parameters,
which are detailed in Table 1 and further described in sections
below.

Variable parameters and distributions. The parametric
distributions (Table 1) for storage temperature (Temp), nominal
minimum growth temperature (Tmin), and maximum growth rate
at the reference temperature (Mumaxref) were based on previous
studies (1, 20). Censored data (5) for initial Lm contamination
level (N0) were fitted with a variety of parametric distributions
using a maximum likelihood estimation in the fitdistrplus v. 1.0.14
package (21). Distributions were compared by visualizing the
goodness-of-fit graphs; the distribution that best approximated the
empirical distribution of the data was selected as the best-fit
model. For maximum population density (LOG10Nmax), data
obtained from previous studies (13, 76) were fitted with various
parametric distributions, which were compared using the Ander-
son-Darling statistic (73).

Uncertain parameters and distributions. The distribution
for Lm prevalence in a given lot (Prev) was inferred following the
Bayesian approach described by Miconnet et al. (52). Beta (0.5,
0.5) was specified as the prior distribution for Prev, which was
iteratively updated using the data obtained from three studies that
reported the prevalence of Lm in smoked seafood products in the
United States (31, 42, 77). The posterior distribution estimated at
the last iteration was used to characterize the uncertainty of Prev.
The proportions of contaminated packages attributed to Lm
serotypes 1/2a, 1/2b, and 4b (Prop_12a, Prop_12b, and Prop_4b)
was assumed to follow a Dirichlet distribution (Table 1).

Parameters used to define the parametric distributions of
variable parameters, referred to as hyperparameters, are also
considered in the model as uncertain parameters. Distributions of
the hyperparameters (Table 1) for Temp (mTemp and sdTemp) and
Tmin (mTmin and sdTmin) were specified based on previous
studies (1, 20). Distributions of the hyperparameters of N0

(mLnN0 and sdLnN0) were inferred through a bootstrap
resampling method using the fitdistrplus v. 1.0.14 package.
Distributions of the hyperparameters of Mumaxref (mMumaxref
and sdMumaxref) were inferred following a Bayesian approach
using the BayesianTools v. 0.1.7 package (34). The distributions
for mMumaxref and sdMumaxref reported by Delignette-Muller et
al. (20) were used as prior distributions, which were updated using
additional data for Mumaxref obtained from challenge studies for
Lm on cold-smoked salmon (40, 76) and unpublished work by our
laboratory (14). Three independent Markov chain Monte Carlo
(MCMC) chains (with the Metropolis algorithm), each with
10,000 iterations, were performed using various starting values for
mMumaxref and sdMumaxref randomly selected from their
respective prior distribution. The first 5,000 iterations of each
MCMC chain were considered the adaptation phase and discarded;
the 5,000 iterations following the adaptation phase of each MCMC
chain were pooled to generate empirical distributions for
mMumaxref and sdMumaxref, respectively. Empirical distributions
were then fitted with a variety of parametric distributions, and the
best-fit distribution for each hyperparameter was determined based
on the Anderson and Darling statistic.

Modeling the initial contamination of production lots. The
prevalence and initial contamination levels of Lm for each
production lot are characterized by a value for Prev and
hyperparameters of N0 (mLnN0 and sdLnN0), which are
considered fixed for a given lot. Based on Prev, a given number
of packages is determined to be contaminated with Lm for each
production lot. Based on mLnN0 and sdLnN0, a lognormal
distribution is specified for N0 for each production lot; values of
N0 are randomly drawn from this distribution and assigned to each
contaminated package within a given lot.

Modeling the die-off and/or growth kinetics of Lm on
contaminated cold-smoked salmon products. To describe the
die-off and growth kinetics of Lm levels on cold-smoked salmon
treated with nisin, we constructed a set of primary models for
describing both the initial die-off phase and the following
regrowth phase (designated as die-off & regrowth models; Table
2) using data on die-off and growth for four Lm strains obtained
through a challenge study of cold-smoked salmon treated with 0,
5, 10, or 20 ppm of nisin (40). A nonlinear (Weibull) submodel
was used to describe the microbial inactivation (45) caused by
nisin treatments, and this submodel was mathematically linked to
one of five different primary growth models (Table 2): (i) the
three-phase linear model described by Buchanan et al. (7), (ii) the
two-phase version (without lag phase) of the Buchanan model,
(iii) the nonlinear model proposed by Baranyi and Roberts (4), (iv)
the Baranyi and Roberts model without lag phase, and (v) the
modification of the nonlinear Gompertz model as described by
Gibson et al. (30) and reparameterized by Zwietering et al. (89).
Lm enumeration data from the cold-smoked salmon challenge
study (40) were fitted with either the primary growth models (for
salmon without nisin treatments) or the die-off & regrowth models
(for salmon treated with nisin), using a modification of the
Levenberg-Marquardt algorithm implemented in the minpack.lm
v. 1.2-1 package (24). For each combination of Lm strain and nisin
concentration, the goodness of fit across models was compared
based on the Bayesian information criterion (BIC) model weight
(3, 9, 44) using the AICcmodavg v. 2.2-2 package (47); the model
(s) with the highest BIC model weight and the associated
parameter values were selected to describe the Lm die-off and
growth kinetics (Table 3). Depending on the model, different die-
off and growth parameters may be needed: (i) the shape (P) and
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scale (i.e., time of the first decimal death; Delta) parameters for
the Weibull inactivation submodel, (ii) the time when Lm transits
from the die-off to the regrowth phase (TC), (iii) the decimal log–
transformed N0 (LOG10N0), (iv) the lag-phase duration (Lag), (v)
the maximum growth rate (Mumax), and (vi) the maximum
population density (LOG10Nmax).

To model the die-off and/or growth kinetics of Lm in
contaminated packages over the shelf life, one value for each die-
off and/or growth associated uncertain parameters is randomly
selected from the corresponding distribution and considered fixed
for a given lot; these parameters include (i) the hyperparameters of
Temp (mTemp and sdTemp), Tmin (mTmin and sdTmin), and
Mumaxref (mMumaxref and sdMumaxref) and (ii) the proportions of
contaminated packages attributed to different serotypes
(Prop_12a, Prop_12b, and Prop_4b). Within a given production
lot, each contaminated package is randomly assigned a serotype,
which governs the selection of the strain used for specification of
the primary growth or die-off & regrowth model and the
associated parameters. Values for Temp, Tmin, and Mumaxref are
randomly selected from their respective distributions, conditional
on the corresponding uncertain parameter values, and assigned to
each contaminated package. Following the approach described in

the risk assessment by the FDA and the U.S. Department of
Agriculture, Food Safety and Inspection Service (82), the value for
Mumax is determined based on the Mumaxref, Tmin, and Temp
values using a rearrangement of the square root model (69) shown
in equation 1:

Mumaxref 0

Mumax0
¼ b Tref � Tmin0ð Þ

b Temp0 � Tmin0ð Þ
� �2

¼ 25� Tmin0ð Þ
Temp0 � Tmin0ð Þ

� �2
ð1Þ

where Tref is the reference temperature (i.e., 258C); Tmin0, Temp0,
and Mumaxref0 are the values of Tmin, Temp, and Mumaxref
assigned to a given package; Mumax0 is the value of Mumax
calculated for the package; and b is the slope parameter for Lm on
the product.

For a given contaminated package, a value for LOG10Nmax
is randomly selected from the appropriate distribution, which
differs between products with different nisin concentrations (0, 5,
10, and 20 ppm); LOG10Nmax values for the nisin concentrations
are described by separate Weibull distributions (Table 1). Based on
the experimental data for LOG10Nmax at the nisin concentrations
reported previously (13, 14, 40, 76), the Weibull distribution mode
across nisin concentrations is assumed to follow a nonlinear

TABLE 3. Representative Lm strains and the associated primary growth and die-off & regrowth models

Nisin, strain Serotype Modela Weightb LOG10N0c Pc Deltac TCc Lagc Mumaxc LOG10Nmaxc

0 ppm

FSL C1-0111 1/2a Bar_nl 1 DIST NA NA NA NA DIST DIST
FSL F2-0237 1/2a Bar_nl 0.50 DIST NA NA NA NA DIST DIST
FSL F2-0237 1/2a Buc_nl 0.50 DIST NA NA NA NA DIST DIST
FSL F6-0366 4b Bar_nl 0.51 DIST NA NA NA NA DIST DIST
FSL F6-0366 4b Buc_nl 0.49 DIST NA NA NA NA DIST DIST
FSL L3-0051 1/2b Buc_nl 1 DIST NA NA NA NA DIST DIST

5 ppm

FSL C1-0111 1/2a WeiBuc_nl 1 DIST 0.02 7.22E�05 8.50 NA DIST DIST
FSL F6-0366 4b WeiBar_nl 1 DIST 0.65 0.48 0.64 NA DIST DIST
FSL L3-0051 1/2b WeiBuc_nl 0.50 DIST 0.75 0.54 1.62 NA DIST DIST
FSL L3-0051 1/2b WeiBar_nl 0.50 DIST 0.75 0.54 1.62 NA DIST DIST

10 ppm

FSL C1-0111 1/2a WeiBar_nl 1 DIST 0.51 0.41 1.58 NA DIST DIST
FSL F2-0237 1/2a WeiBuc_nl 1 DIST 0.25 0.11 3.37 NA DIST DIST
FSL F6-0366 4b WeiBuc_nl 1 DIST 0.11 0.11 3.39 NA DIST DIST
FSL L3-0051 1/2b WeiBar 1 DIST 0.47 0.29 1.41 1.41 DIST DIST

20 ppm

FSL C1-0111 1/2a WeiBar_nl 1 DIST 0.23 0.42 3.00 NA DIST DIST
FSL F2-0237 1/2a WeiBar 1 DIST 0.28 0.03 0.68 8.90 DIST DIST
FSL F6-0366 4b WeiBuc_nl 0.51 DIST 0.28 0.38 6.34 NA DIST DIST
FSL F6-0366 4b WeiBar_nl 0.49 DIST 0.28 0.38 6.38 NA DIST DIST
FSL L3-0051 1/2b WeiBuc_nl 1 DIST 0.13 1.23E�03 2.76 NA DIST DIST

a The best-fit primary growth and die-off & regrowth model(s) for each combination of nisin concentration and Lm strain; models for 5,
10, and 20 ppm of nisin treatments represent a combination of a Weibull inactivation submodel and a regrowth submodel (e.g.,
Buchanan). Bar_nl, Baranyi without lag; Buc_nl, Buchanan without lag; WeiBuc_nl, Weibull-Buchanan without lag; WeiBar_nl,
Weibull-Baranyi without lag; WeiBar, Weibull-Baranyi.

b For a given combination of nisin concentration and Lm strain, the proportion of iterations in which each model is used in the simulation
as determined based on the BIC model weight.

c The parameters of the primary growth and die-off & regrowth models. LOG10N0, initial level (log CFU/g); P, shape parameter of the
Weibull inactivation submodel (no unit); Delta, scale parameter of the Weibull inactivation submodel (time for the first decimal
reduction in population density due to antimicrobial treatments; day); TC, time of transition from the die-off to the regrowth phase (day);
Lag, duration of lag phase (day); Mumax, maximum growth rate (day�1); LOG10Nmax, maximum population density (log CFU/g).
DIST, the parameters are characterized by a parametric distribution obtained from analyses of the data reported by Delignette-Muller et
al. (20), Kang et al. (40), Tang et al. (76), and Chen et al. (13). NA, not applicable.
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relationship shown in equation 2:

Mode0 ¼ 9:12� Nisin
18:95

� 0:64

ð2Þ

where Nisin is the concentration of nisin treatments and Mode0 is
the mode of the Weibull distribution specified for a given nisin
concentration. The effect of nisin concentration on the Weibull
distribution standard deviation is assumed to follow a linear
relationship characterized by equation 3:

sd0 ¼ 0:043Nisinþ 0:29 ð3Þ
where Nisin is the concentration of nisin treatments and sd0 is the
standard deviation of the Weibull distribution specified for a given
nisin concentration. The mode and standard deviation estimated at
a given nisin concentration were used to determine the shape and
scale parameters needed to define the LOG10Nmax distribution.
For die-off & regrowth models, values for P, Delta, TC, and Lag
are assigned to each contaminated package according to their
weights in the simulation process determined based on BIC model
weights (see Table 3).

Modeling the process of Lm testing. Because the analytical
size of food samples for Lm detection is generally 25 g (81), we
modeled the process of testing a given package for presence or
absence of Lm assuming that (i) the distribution of bacterial cells
in each contaminated package is homogeneous and (ii) a 25-g
portion of the product is randomly sampled from each collected
package. When the number (N) of Lm cells in a contaminated
package is small, it is assumed that each bacterial cell is found in
one random gram of product, resulting in N grams of contaminated
product within the package; the number of grams of uncontam-
inated product within a package can thus be calculated by
subtracting N from the net weight of the product per package
(Net_Wt). Therefore, the number of Lm contained in the 25-g
sample (X) is assumed to follow a hypergeometric distribution; the
probability that X¼ m can be calculated using equation 4:

P X ¼ mð Þ ¼
N
m

� 
� Net Wt� N

Sample Size� m

� 
Net Wt

Sample Size

�  ð4Þ

where Sample_Size is the analytical sample size for Lm detection
(i.e., 25 g). For simplicity, the accuracy of the methodology for Lm
detection was set to 100%. Consequently, the probability that a
contaminated package containing N bacterial cells of Lm tests
negative for Lm is given by:

P X ¼ 0ð Þ ¼
Net Wt � N

25

� 
Net Wt
25

�  ð5Þ

The probability that a package will test positive for Lm is thus
given by 1� P(X¼ 0); this probability is set to 99.9% if N . 22
(based on Net_Wt ¼ 100 g) because the probability of detection
exceeds this threshold when N ¼ 22.

Modeling the sampling of cold-smoked salmon products.
We assumed that (i) the probability for sampling the products
(e.g., by regulatory agencies) at a processing facility is higher than
that at retail stores and (ii) the probability for sampling of products
collected from consumer homes is very low but still possible in
cases of outbreak investigations or consumer complaints. For

example, in the initial stages of outbreak investigations (before a
specific product is confirmed as the outbreak source), products
from multiple processors may be considered possible outbreak
sources, and hence all could be subject to testing by regulatory
agencies (including samples collected in consumer homes). In
cases like this, even products from processors ultimately not
identified as the outbreak source (e.g., because the isolates
obtained from their products do not match the subtypes of the
outbreak strain) may be subject to a recall action. Sampling of a
production lot of cold-smoked salmon products was thus allowed
to occur for product present at the processing facility, retail stores,
and consumer homes, with decreasing probabilities. For simplic-
ity, it is assumed that (i) the probability that sampling will occur
on a given day is the same for each day within a given stage (i.e.,
the facility, retail stores, or consumer homes), and (ii) the
probability that sampling will occur on a given day at retail stores
is fivefold lower than that at the facility, whereas the probability
that sampling will occur on a given day at consumer homes is
fivefold lower than that at retail stores (baseline scenario).
Sampling probability ratios are modeled as a uniform distribution
with a minimum of 1 and a maximum of 10 (Table 1). The ratio of
the probability of sampling between the facility and retail stores
and between retail stores and consumer homes (Sampling_R;
Table 1) is used to determine a probability distribution of sampling
time, based on which 10,000 sampling days are randomly selected
for each given lot and a binary result (at least one package tests
positive for Lm versus no package tests positive for Lm) is
determined for each sampling. The RR risk for a given lot is
calculated by dividing the number of samplings that lead to Lm-
positive tests by the total number of samplings.

Sensitivity analysis. One-at-a-time sensitivity analysis was
performed to test the sensitivity of RR risks to each of the variable
parameters by running the model under various scenarios (i.e.,
with various parameter settings; see Supplemental Table S1 for
details). The parameter space of each variable parameter being
tested was divided into 1,000 equally probable intervals, and a
value was randomly drawn from each of the intervals, leading to a
collection of 1,000 parameter values. Each of the 1,000 values was
randomly assigned to one production lot and fixed for all packages
in the given lot. The Spearman rank correlation coefficient
(SRCC) was calculated to infer the correlation between the
parameter and RR risk using the stats v. 3.5.2 package (70). The
resulting distribution of RR risks was compared with the
distribution under the baseline scenario where uncertain param-
eters were set to baseline values (Table S1).

The uncertain parameters Prev and Sampling_R are not
related to the rest of the parameters and were thus tested
independently using the approach described above for the variable
parameters. The other uncertain parameters were divided into five
groups based on inherent dependency, and parameters within the
same group were tested simultaneously: (i) mTemp and sdTemp
(the hyperparameters of Temp), (ii) mTmin and sdTmin (the
hyperparameters of Tmin), (iii) mLnN0 and sdLnN0 (the hyper-
parameters of N0), (iv) mMumaxref and sdMumaxref (the hyper-
parameters of Mumaxref), and (v) Prop_12a, Prop_12b, and
Prop_4b (proportions with which each serotype contaminates a
given lot). When the model was run to test the sensitivity of RR
risks to multiple parameters simultaneously, all parameters were
sampled from their respective parameter space through Latin
hypercube sampling, using the lhs v. 1.0.1 package (10), resulting
in 1,000 combinations of parameter values (Table S1). Each
combination was assigned to one production lot, and the RR risk
of the specific production lot was determined. The partial rank
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correlation coefficient (PRCC) (41) was used to characterize the
correlation between each of the parameters and the RR risk while
controlling the other variables in the same group, using the epiR v.
1.0.13 package (74). The resulting distributions of RR risks were
compared with the distribution provided by the baseline scenario
with uncertainty parameters set to baseline values (Table S1).

Scenario analysis. For scenario (what-if) analyses, alterna-
tive scenarios representing potential interventions to reduce RR
risks were defined, and the model was run under specific
parameter settings that mimic each of the scenarios (Table S1).
The efficacy of the interventions for reducing RR risks was
assessed by comparing the RR risks predicted by running the
model under the alternative scenarios and the baseline scenario
(see Table S1). Alternative scenarios assessed were (i) products
treated with 5, 10, and 20 ppm of nisin before vacuum packing;
(ii) all products stored and distributed at,5 or,68C (which could
be achieved by use of a time-temperature indicator (54) attached to
each package); (iii) products reformulated with bacteriostatic
growth inhibitors (i.e., a combination of 2% potassium lactate and
0.14% sodium diacetate) that are assumed to reduce Mumax
(day�1) and LOG10Nmax (log CFU per gram) by 0.2 and 1.3,
respectively, and to extend Lag (day) by 21.4 (40); and (iv) the
prevalence of Lm reduced by 50% (e.g., through stringent
implementation of pathogen environmental monitoring programs,
good manufacturing practices, and sanitation standard operation
procedures) (66).

Assessment of model performance for predicting Lm die-
off and growth on cold-smoked salmon. To the best of our
knowledge, data enabling the direct validation of RR risks are not
yet available; hence, we assessed our model only with regard to its
ability to predict die-off and/or growth of Lm on cold-smoked
salmon treated with various nisin concentrations, using data from
a challenge study of Lm on cold-smoked salmon (13). This study
is not completely independent from the model because the data for
day 30 Lm levels were included in the data used to characterize the
parametric distributions for LOG10Nmax. However, the data for
day 15 Lm levels for untreated and nisin-treated samples were not
included in the model development and were thus used to assess
the model performance. The model was run with parameters
adjusted to mimic the experiment settings (e.g., inoculum level
and storage temperature) used to generate the experimental data
reported in the study. Simulated day 15 Lm data generated for
products treated with 0 and 20 ppm of nisin were compared with
the experimental data for untreated and nisin-treated samples,
respectively. To account for the variation in Lm enumeration due
to uncontrollable experimental factors, an error term is associated
with the primary growth and die-off & regrowth models.
According to Delignette-Muller et al. (20), this error term is
assumed to follow a normal distribution with a mean of 0 and a
standard deviation of sderror, where the natural log–transformed
sderror is assumed to follow a normal distribution with a mean of
�1.20 and a standard deviation of 0.0185. For each comparison,
the proportion of the simulated data that fall within the range of
the experimental data was calculated, and the Mann-Whitney U
test was used to determine whether the medians of the simulated
and the experimental data differed from each other at α ¼ 0.05
(stats v. 4.0.2 package).

RESULTS

Baseline prediction of the RR risk for cold-smoked
salmon products. In the 3R model, we consider RR risks as

the likelihood of having at least one Lm-positive sample
given that a set number of samples are tested for a given lot.
The RR risk predicted through the 3R model is presented as
a distribution and summarized using the median and the
95% credible interval (CI). In the second-order Monte Carlo
simulation framework used for our 3R model, variability is
assumed to occur in a given lot across packages with respect
to certain product and Lm growth parameters, whereas
uncertainty is assumed to be present across lots. Because
RR risks are lot-level predictions (i.e., a value for RR risk is
associated with a given lot rather than a given package of
the product), they are calculated while accounting for the
variability among packages within a given lot. Consequent-
ly, the distribution of RR risks output from the model is
mainly reflective of the uncertainty dimension of the
framework. This risk outcome presentation differs from
that of outcomes of most public health risk assessments
conducted with second-order Monte Carlo simulations (64,
66, 83), which typically consist of distributions that
characterize both variability and uncertainty. Under the
baseline scenario, the median RR risk was 0.333 (95% CI:
0.288, 0.384), 0.183 (95% CI: 0.156, 0.215), and 0.040
(95% CI: 0.032, 0.048) for n¼10, n¼5, and n¼1 sampling
schemes, respectively (Fig. S1). These predicted RR risks
are for production lots with an Lm prevalence of 4% and no
interventions implemented, which may not be representative
for contemporary cold-smoked salmon products across
markets and countries. Therefore, these data should not be
interpreted as 33.3% (or 18.3 or 4%) of the products in the
market should be recalled or otherwise handled assuming
Lm contamination. Rather, our results suggest that high RR
risks should be expected for products with a reasonably high
contamination frequency (e.g., smoked seafoods) and no
appropriate control strategies, especially when large num-
bers of samples are collected.

Model performance for predicting Lm die-off and
growth on cold-smoked salmon. A challenge study of Lm
on cold-smoked salmon treated with 0 or 25 ppm of nisin
performed by Chen et al. (13) provided day 15 Lm
enumeration data for salmon stored at 78C. These data
were used to assess the performance of the 3R model with
regard to predicting Lm die-off and/or growth kinetics on
contaminated products. The comparisons of the empirical
distributions between the simulated (n ¼ 100) and
experimental (n ¼ 24) data for Lm levels is shown in
Figure 2 (see Table S2 for detailed statistics). For cold-
smoked salmon products without nisin treatments, the
experimental Lm levels were 8.17 to 9.27 log CFU/g at
day 15, and the simulated levels for day 15 were 6.59 to
9.71 log CFU/g, with 71% of the data points falling within
the range of the experimental data. The Mann-Whitney U
test indicated no significant difference in median between
the experimental and the simulated data (P ¼ 0.179). For
cold-smoked salmon products with nisin treatments, the
experimental data for Lm on salmon treated with 25 ppm of
nisin was compared with the simulated data for Lm on
salmon treated with 20 ppm of nisin because this is the
highest nisin concentration that can be specified in the
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current version of the 3R model. A total of 92% of the
simulated data (day 15 levels of 4.05 to 9.07 log CFU/g)
were within the range of the experimental data (day 15
levels of 4.88 to 8.52 log CFU/g); the Mann-Whitney U test
indicated that the medians of the experimental and
simulated data were not significantly different (P ¼ 0.07).
Although a weakness of this method is that model
predictions for 20 ppm were assessed with experimental
data for 25 ppm, the impact of this approach is likely to be
limited relative to variability of nisin concentrations
expected to be present in commercial products. Kang et
al. (40) reported that the dose-dependent increase in efficacy
of nisin against Lm slowed down as the nisin concentration
increased from 0 to 20 ppm. In their study, none of the
relevant die-off and growth parameters differed significantly
between 10 and 20 ppm of nisin, further supporting our
assumption that differences between Lm levels on salmon
treated with 20 and 25 ppm of nisin would be negligible.
Overall, our results support the ability of the 3R model to
provide reasonable estimates for Lm levels on both
untreated and nisin-treated cold-smoked salmon.

Sensitivity analysis. The sensitivity of RR risks to
each of the variable parameters was assessed using the one-
at-a-time approach by running the models under different
scenarios that allowed us to assess the impact of (i) storage

temperature variability (Var_Temp), (ii) nominal minimum
growth temperature variability (Var_Tmin), (iii) initial
contamination level variability (Var_N0) (iv) reference
temperature maximum growth rate variability (Var_Mu-
maxref), and (v) maximum population density variability
(Var_LOG10Nmax) (see Table S1 for detailed parameter
settings). The medians and 95% CIs for the empirical
distributions of the predicted RR risk provided by running
the model under scenarios specified for the various variable
parameters were not different from those of the baseline
scenario with uncertain parameters set to their baseline
value (Figs. 3 and S2). However, the SRCC between the RR
risk and the variable parameters (Figs. 4 and S3) revealed
that RR risk was positively correlated with initial
contamination level (P , 0.001), maximum growth rate at
the reference temperature (P , 0.001), and storage
temperature (P , 0.001) and negatively correlated with
nominal minimum growth temperature (P , 0.001);
maximum population density was not correlated with RR
risk. According to Cohen’s standard (16, 17), the effect size
was medium for initial contamination level (SRCC¼ 0.405)
and maximum growth at the reference temperature (SRCC¼
0.275) and small for storage temperature (SRCC ¼ 0.177)
and nominal minimum growth temperature (SRCC ¼
�0.169).

FIGURE 2. Comparison between the simulated levels of Lm (log CFU/g) on cold-smoked salmon and the experimental data of Chen et al.
(13). (A) Simulated and experimental Lm levels on untreated salmon after 15 days of storage at 78C; (B) simulated Lm levels on salmon
treated with 20 ppm of nisin and experimental Lm levels on salmon treated with 25 ppm of nisin after 15 days of storage at 78C.
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FIGURE 3. Empirical cumulative distribution functions (ECDFs) and the corresponding boxplots of the predicted regulatory and recall
(RR) risk obtained by running the model under the baseline scenario with uncertain parameters set to their baseline value
(Basline_NoUnc) and alternative scenarios specified in the sensitivity analysis for assessing the impact of (A) storage temperature
variability (Var_Temp), (B) nominal minimum growth temperature variability (Var_Tmin), (C) initial contamination level variability
(Var_N0), (D) reference temperature maximum growth rate variability (Var_Mumaxref), and (E) maximum population density variability
(Var_LOG10max). Within each panel, medians of the distributions and the upper and lower bounds of the 95% credible intervals are
plotted on the ECDF as shaded circles and noted by numbers next to the circles. For each of the boxplots, the box encompasses the region
from the first to the third quartile, with the median denoted by the line in the box. The upper whisker extends from the upper end of the box
to the largest value no further than 1.5 times the interquartile range, and the lower whisker extends from the lower end of the box to the
smallest value no further than 1.5 times the interquartile range. Data points beyond the end of the whiskers are plotted as dots.

FIGURE 4. Sensitivity of regulatory and recall (RR) risks to the model variable parameters: (i) storage temperature (Temp); (ii) nominal
minimum growth temperature (Tmin); (iii) initial contamination level (N0); (iv) maximum growth rate at the reference temperature
(Mumaxref); and (v) maximum population density (LOG10Nmax). The Spearman rank correlation coefficients between each parameter
and the predicted RR risk are presented as the horizontal bars with the numbers and the associated P values shown next to the respective
bars. Positive and negative values indicate positive and negative correlations, respectively.
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To assess the sensitivity of RR risks to the various
uncertain parameters, seven scenarios were specified for
testing the uncertainty of (i) mean and standard deviation
for storage temperature (Unc_Temp), (ii) mean and standard
deviation of the distribution of nominal minimum growth
temperature (Unc_Tmin), (iii) mean and standard deviation
of the distribution of natural log–transformed initial
contamination level (Unc_N0), (iv) mean and standard
deviation of the distribution of maximum growth rate at the
reference temperature (Unc_Mumaxref), (v) Lm prevalence
(Unc_Prev), (vi) ratio of sampling likelihood between
stages (Unc_SamplingR), and (vii) proportion of contam-
inated packages attributed to the three serotypes (Unc_Se-
roProp) (see Table S1 for detailed parameter settings). In

these analyses, variation in prevalence contributes a
considerably higher variation in the predicted RR risk
(95% CI: 0.285, 0.386) than does the variation under the
baseline scenario with uncertain parameters set to their
baseline values (Figs. 5 and S4). Consistent with these
findings, RR risk was positively correlated with Lm
prevalence (P , 0.001) with a large effect size (SRCC ¼
0.981; Figs. 6 and S5). This indicates that the uncertainty of
Lm prevalence contributed significantly to the variation of
the predicted RR risk; thus, a good estimation of this
parameter is important for making precise predictions.
Other sources of uncertainty that contributed significantly to
the variation of the predicted RR risk (Figs. 6 and S5)
include mean of the distribution of storage temperature (P

FIGURE 5. Empirical cumulative distribution functions (ECDFs) and the corresponding boxplots of predicted regulatory and recall (RR)
risk obtained by running the model under the baseline scenario with uncertain parameters set to their baseline value (Baseline_NoUnc)
and alternative scenarios specified in the sensitivity analysis for assessing the uncertainty of (A) mean and standard deviation of storage
temperature (Unc_Temp); (B) mean and standard deviation of nominal minimum growth temperature (Unc_Tmin); (C) mean and standard
deviation of natural log–transformed initial contamination level (Unc_N0); (D) mean and standard deviation of reference temperature
maximum growth rate (Unc_Mumaxref); (E) ratio of sampling likelihood at various stages (Unc_SamplingR); (F) proportion of
contaminated packages attributed to the three serotypes (Unc_SeroProp); and (G) Lm prevalence (Unc_Prev). Within each panel,
medians of the distributions and the upper and lower bounds of the 95% confidence intervals are plotted on the ECDF as shaded circles
and noted by the numbers next to the circles. For each of the boxplots, the box encompasses the region from the first to the third quartile,
with the median denoted by the line in the box. The upper whisker extends from the upper end of the box to the largest value no further
than 1.5 times the interquartile range, and the lower whisker extends from the lower end of the box to the smallest value no further than
1.5 times the interquartile range. Data points beyond the end of the whiskers are plotted as dots.
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, 0.001) and mean (P, 0.001) and standard deviation (P¼
0.008) of the distribution of natural log–transformed initial
contamination level. The effect size of the correlation with
RR risks was medium for mean of the distribution of
storage temperature (PRCC ¼ 0.407) and small for mean
(PRCC ¼ 0.121) and standard deviation (PRCC ¼�0.092)
of the distribution of natural log–transformed initial
contamination level (16, 17). The uncertainties associated
with the characteristics of Lm, including the parameters
associated with nominal minimum growth temperature,
maximum growth rate at the reference temperature, and Lm
serotype, did not significantly contribute to the variation in
the predicted RR risk. The ratio of sampling likelihood
between the facility and retail stores (and between retail
stores and consumer homes) was not significantly correlated
with RR risk. This suggests that the impact of time (and
location) of sample collection on RR risks is limited; thus,
reliable data on regulatory sample collection practices is not
essential for the type of 3R model reported here.

Scenario analysis. Seven scenarios with parameter
settings specified to mimic a variety of interventions were
used to assess the effectiveness in reducing RR risks of (i)
treatment with 5 ppm of nisin (WI_NT5), (ii) treatment with
10 ppm of nisin (WI_NT10), (iii) treatment with 20 ppm of
nisin (WI_NT20), (iv) controlling temperature to ,68C
(WI_TC6), (v) controlling temperature to ,58C (WI_TC5),
(vi) treatment with bacteriostatic growth inhibitors (WI_GI),
and (vii) a 50% reduction in Lm prevalence (WI_Prev50)
(see Table S1 for detailed parameter settings). Nisin
treatments drastically reduced RR risks compared with the

baseline scenario (without nisin treatments), and the
effectiveness for reducing RR risks increased with increased
nisin concentration (Fig. 7A and 7C). Treatment of the
products with 5 ppm of nisin resulted in a reduction in the
predicted RR risk from 0.333 (95% CI: 0.288, 0.384) to
0.109 (95% CI: 0.074, 0.146). When the nisin concentration
was increased to 20 ppm, the predicted RR risk was further
lowered to 0.017 (95% CI: 0.001, 0.033). Reduction of the
prevalence of Lm contamination among finished products by
50% also was an effective strategy for reducing RR risks
(Fig. 7A and 7C); under this scenario, the predicted RR risk
was 0.182 (95% CI: 0.153, 0.213). In comparison,
reformulation of the products with bacteriostatic growth
inhibitors (a combination of 2% potassium lactate and 0.14%
sodium diacetate) led to a considerably lower reduction of
the predicted RR risk. With bacteriostatic growth inhibitors
assumed to result in a 0.2-day�1 reduction in maximum
growth rate, a 1.3-log reduction in maximum population
density, and a 21.4-day extension in lag phase, the predicted
RR risk was reduced to only 0.313 (95% CI: 0.268, 0.367;
Fig. 7A and 7C). Assuring appropriate cold storage of all
products (no products exposed to a storage temperature .6
or .58C) did not reduce RR risks (Fig. 7B and 7D).

DISCUSSION

Smoked seafood is an RTE food that historically has a
high frequency of recalls (12, 71, 79). Although various
growth models and public health risk assessments for Lm in
smoked seafood have been developed (49, 50, 65, 66, 82),
selection of appropriate interventions to implement at the
production level remains a challenge. This challenge is

FIGURE 6. Sensitivity of regulatory and recall (RR) risks to the model uncertain parameters: (i) mean (mTemp) and standard deviation
(sdTemp) of storage temperature; (ii) mean (mTmin) and standard deviation (sdTmin) of nominal minimum growth temperature; (iii)
mean (mLnN0) and standard deviation (sdLnN0) of natural log–transformed initial contamination level; (iv) mean (mMumaxref) and
standard deviation (sdMumaxref) of reference temperature maximum growth rate; (v) ratio of sampling likelihood at various stages
(Sampling_R); (vi) proportion of contaminated packages attributed to the three serotypes (Prop_12a, Prop_12b, and Prop_4b); and (vii)
Lm prevalence (Prev). The Spearman rank correlation coefficients (for parameters Prev and Sampling_R) or the partial rank correlation
coefficients (for parameters mTemp, sdTemp, mTmin, sdTmin, mLnN0, sdLnN0, mMumax, sdMumax, Prop_12a, Prop_12b, and
Prop_4b) between the parameters and the predicted RR risk are presented as horizontal bars with the numbers and the associated P values
shown next to the respective bars. Positive and negative values indicate positive and negative correlations, respectively.
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compounded by the fact that some interventions have been
reported in the peer-reviewed literature, some are marketed
by commercial entities, and some are suggested by
customers or regulatory agencies. In addition to the
challenge of selecting specific interventions, the mecha-
nisms of available Lm interventions must be considered;
some interventions (i) reduce prevalence and levels of Lm,
(ii) reduce or prevent growth, or (iii) achieve both reduced
prevalence (and levels) and reduced growth. To improve the
ability of producers to select appropriate interventions, we
developed the 3R model, a decision support tool that can
help with Lm risk management and selection of interven-
tions. Distinct from the previous risk assessment models, the
3R model focuses on assessing the impact of interventions
on the risk of food recalls or other regulatory consequences
due to Lm contamination; however, both RR risk and public
health risk models should be used to support decision

making. We have detailed a roadmap that illustrates how
existing public health risk assessments and growth models
provide a valuable starting point for developing RR risk
models. We found (i) that accurate data on product
temperature and Lm prevalence and initial levels are needed
for reliable RR risk models and (ii) that nisin treatments are
the most effective interventions for reducing RR risks and
Lm interventions that reduce only prevalence are less
effective but still lead to more effective RR risk reductions
than do interventions that only retard growth. The RR risk
modeling approach detailed here should be easily applicable
to other foods (e.g., produce) for which improved decision
making on pathogen interventions is desired.

Existing public health risk assessments and growth
models provide a valuable starting point for developing
RR risk models. One advantage of using cold-smoked

FIGURE 7. Comparison of the predicted regulatory and recall (RR) risk for cold-smoked salmon products produced under the baseline
scenario and alternative scenarios. (A) Histograms of the predicted RR risk of the products produced under (i) the baseline scenario
(Baseline), (ii) treatment with 5 ppm of nisin (WI_NT5), (iii) treatment with 10 ppm of nisin (WI_NT10), (iv) treatment with 20 ppm of
nisin (WI_NT20), (v) reformulation with growth inhibitors (2% potassium lactate and 0.14% sodium diacetate; WI_GI), and (vi) a 50%
reduction in the prevalence of Lm contamination (WI_Prev50). (B) Histograms of the predicted RR risk of the products produced under
the baseline scenario (Baseline) or with temperature controls (i.e., removing all products that have been stored at .68C [WI_TC6] or 58C
[WI_TC5]). (C) Empirical cumulative distribution functions (ECDFs) of the predicted RR risk of the products produced under the
scenarios presented in panel A. Medians of the distributions and the upper and lower bounds of the 95% credible intervals are plotted on
the ECDFs as shaded circles and noted by the numbers next to the circles. (D) ECDFs of the predicted RR risk of the products produced
under the scenarios presented in panel B. Medians of the distributions and the upper and lower bounds of the 95% credible intervals are
plotted on the ECDFs as shaded circles and noted by the numbers next to the circles. Temperature control scenarios are shown separately
in panels B and D for better visualization.
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salmon as a model product to develop the 3R model is that a
large number of studies and original data are available,
which provide or can be used to estimate values or
distributions of model parameters specific for this product,
as recommended by the Codex Alimentarius Commission
(15) and supported by Pradhan et al. (68). In the present
study, the parameters used to model the die-off and growth
kinetics of Lm on contaminated products were characterized
using data specifically generated for Lm on cold-smoked
salmon with various nisin treatments (40). To further
improve the estimation of Lm levels on contaminated
products across days, each die-off–growth curve was fit
with either five primary growth or five die-off & regrowth
models to ensure that the best-fit model and its associated
parameters were used for modeling Lm die-off and/or growth
kinetics. Similar to previous studies (8, 20, 66, 68, 82), the
square root model (69) was applied to model the effect of
temperature on the maximum growth rate of Lm. Although
various other environmental factors or product characteris-
tics can affect the maximum growth rate of Lm, including
pH, water-phase salt content, phenolic concentration,
nitrites, and dissolved CO2 (18, 49), we did not adjust
growth parameters based on these factors because (i) they
have been insufficiently characterized to infer appropriate
distributions (20) and (ii) their effects are accounted for
through the variability and uncertainty associated with the
maximum growth rate at the reference temperature. Another
simplification made for the model was the constant storage
temperature for a given package across stages (i.e., the
facility, retail stores, and consumer homes). Although
growth of Lm on cold-smoked salmon under varying
temperature conditions has been modeled previously using
the DMS model (66), we made the simplifying assumption
of a constant storage temperature, at least in part because the
data and tools were not available to allow for temperature
adjustments of die-off and growth parameters required for
the primary growth models and the Weibull submodel for
microbial inactivation. This simplification may underesti-
mate the temperature at the consumer stage, which is
associated with a higher likelihood of temperature abuse.
However, underestimation of the consumer temperature is
not likely to have a substantial impact on predicting RR risks
and the reduction in RR risks achieved by various
interventions. First, the 3R model considers that the
probability that a given package to be tested is positive for
Lm is ca. 1 when the contamination level is .22 CFU per
package (assuming a net weight of 100 g and a sample size
of 25 g). Given that the baseline temperature distribution
centers at 4.48C, sufficient Lm growth to achieve this
contamination level is likely (even with a starting inoculum
of one cell per package) because the consumer stage is
assumed to start 40 days after the end of production. Second,
the probability of sampling at the facility and retail stores is
considerably higher than that of sampling at consumer
homes; hence, underestimation of growth at the consumer
stage is likely to have limited impact on RR risks.

Similar to previous risk assessments (20, 64, 66, 83), a
second-order Monte Carlo simulation framework (27, 56,
85), which enables separate analyses of variability and

uncertainty, was used for the 3R model, allowing for
variation of uncertain parameters across production lots and
variable parameters across product packages within a lot. In
the simulation process, we included both variable and
uncertain components for various factors (storage temper-
ature, maximum growth rate at the reference temperature,
initial contamination level, and nominal minimum growth
temperature) associated with a given package when existing
data and tools allowed for reliable characterization of the
respective distributions. Because Lm prevalence is typically
associated with a given lot instead of a given package,
prevalence was treated as a lot-level parameter, such that
each lot was assigned a single value for Lm prevalence,
which was allowed to differ across lots. The variation of Lm
prevalence across lots was deemed uncertain at least
partially because the lack of sufficient data to derive a
distribution that characterizes variability. Thus, the distri-
bution of prevalence was inferred based on a non–data-
based prior suggested by Miconnet et al. (52) and the
prevalence of Lm in smoked seafood products in the United
States reported in only three studies (31, 42, 77). Therefore,
future studies on variability of Lm prevalence, among other
critical lot-level factors, will allow further improvements of
the 3R model. The RR risk predicted under the baseline
scenario highly depends on the number of products sampled
(our baseline scenario assumed sampling of 10 products per
lot), a number that end users may want to modify based on
sampling schemes expected for their products. The 3R
model assesses the RR risk of a given production lot, with a
lot designated as being recalled or triggering other
regulatory consequences when at least one package tests
positive for Lm and regardless of the total number of
packages that test positive. The actual levels of Lm, when
above the detection threshold (0.04 CFU/g), are not likely to
affect the RR risk. In our 3R model, the RR risk is
calculated for a given production lot, which is different
from the approach used for public health risk assessments,
which typically calculate risks per serving or population
denominator. Therefore, although both variability and
uncertainty have been included in the 3R model, for some
factors the 95% CI reported for the RR risk does not reflect
the variability among product packages because RR risk is a
lot-level risk outcome. This situation illustrates the
challenge of separately assessing variability and uncertainty
associated with lot-level risk outcomes as compared with
package- or serving-level risk outcomes (e.g., the risk of
human listeriosis), which should represent a focus for future
studies. In the sensitivity analysis conducted to identify
variable and uncertain parameters important for predicting
RR risks, the effect size for parameters was represented by
SRCC or PRCC, nonparametric measures for nonlinear but
monotonic relationships (46) that have been used in
sensitivity analyses in multiple risk assessments (67, 78,
80, 87). Although an analysis of variance (ANOVA) method
(66) and Sobol sensitivity indices (84) have been used for
these types of analyses and can account for interactions
between model parameters (53), their implementation
requires an unrealistic setting for the 3R model (i.e., all
packages within the same production lot share same values
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for the variable parameters); we thus selected rank-based
methods for sensitivity analyses conducted here.

Sensitivity analyses suggest that accurate data on
product temperature and Lm prevalence and initial
levels are needed for reliable RR risk models. Sensitivity
analysis of the uncertain parameters revealed that param-
eters related to product temperature and Lm prevalence and
initial levels had a significant impact on the RR risk. Among
these parameters, prevalence of Lm on cold-smoked salmon
products had the largest impact on the RR risk followed by
initial levels of Lm and product temperature. These results
support the assumption that additional data on the
prevalence of Lm is the most important factor for improving
the prediction of RR risks; more extensive data on
temperature and initial contamination levels also will
substantially increase the accuracy of model predictions.
The uncertainties associated with the maximum growth rate
and nominal minimum growth temperature of Lm and the
proportions of contaminated products attributed to various
serotypes did not significantly contribute to the variation in
the predicted RR risk, suggesting that the 3R model requires
limited additional data collection with respect to these
parameters.

Sensitivity analyses also revealed that four variable
parameters had a significant impact on the RR risk,
including two parameters linked to characteristics of the
contaminated product (storage temperature and initial
contamination level) and two growth parameters (maximum
growth rate at the reference temperature and nominal
minimum growth temperature). The initial Lm contamina-
tion level was positively correlated with the RR risk, with
the highest effect size among the variable parameters. In
previous studies, researchers have also identified the initial
Lm contamination level as an important variable that affects
listeriosis risks due to consumption of contaminated food
products, including cold-smoked salmon (66), frozen
vegetables (88), and RTE deli products (28). As a result,
interventions that target a reduction in the initial Lm
contamination level may be effective for reducing RR risks.
The predicted RR risk increased with the increase in the
maximum growth rate of Lm and the increase in storage
temperature for the products, indicating higher RR risks for
cold-smoked salmon products stored in environments that
facilitate the growth of Lm, such as environments with high
temperatures. A decrease in the nominal minimum growth
temperature of Lm also led to an increase in the predicted
RR risk, suggesting that contamination with Lm isolates that
grow faster at refrigeration temperatures increased RR risks.
These results are consistent with those of a previous
quantitative risk assessment of Lm on French cold-smoked
salmon products, in which an ANOVA-based approach was
used to rank the sensitivity of predicted Lm levels in a
contaminated serving to various model parameters (66).
Even with a different model outcome and methodology for
the sensitivity analysis, those researchers also concluded
that maximum growth rate, nominal minimum growth
temperature, and product temperature were significant
parameters (66). Therefore, these parameters were consis-

tently identified as additional targets for interventions, even
if the relative impact may differ depending on the types of
risk outcomes assessed (e.g., public health risk versus RR
risk), as further discussed in the following section. The fact
that maximum growth rate and nominal minimum growth
temperature were deemed appropriate targets for interven-
tions but not targets for additional data collection or
research (because we found an impact of the variability
but not the uncertainty associated with these two factors)
demonstrates the merit of the separate modeling of
variability and uncertainty, which can be achieved using
the second-order Monte Carlo simulation framework as in
our 3R model and previous risk assessment models.

Although nisin treatments are the most effective Lm
interventions for reducing RR risks, interventions that
reduce only Lm prevalence are less effective but still
lead to more effective RR risk reductions than do
interventions that only retard growth. As an FDA-
approved natural antimicrobial, nisin has been extensively
studied for its efficacy for reducing Lm levels on cold-
smoked salmon (40, 57, 60, 76, 86). However, the potential
of nisin to reduce the risk of listeriosis or of regulatory
consequences (e.g., recalls) associated with cold-smoked
salmon products remained to be explored. Based on our
scenario analysis, nisin treatments drastically reduced the
RR risk in a concentration-dependent manner (i.e., higher
nisin concentrations lead to more pronounced reductions in
RR risk) and are the most effective intervention for reducing
RR risks. The effectiveness of the nisin treatments for
reducing RR risks can be attributed to the fact that these
treatments reduced both (i) the total number of the
contaminated packages and (ii) the initial Lm contamination
levels in those packages that remained contaminated.
Improved accuracy of the predicted effect of various nisin
concentrations on RR risks could be achieved by addressing
some simplifying assumptions that had to be made for our
model due to the unavailability of the data that would be
needed to assess all complexities of nisin-mediated Lm
control. For example, the underlying primary growth and
die-off & regrowth models do not account for the Jameson
effect (suppression of Lm growth by competitive microbiota
present on salmon), which has been included in previous
studies that predicted Lm growth in seafood-associated
products (48, 51). Another simplification related to the nisin-
treated products is that a given contaminated package would
be considered not contaminated if the concentration of Lm in
the package were to fall to less than one cell per package,
resulting in a reduced prevalence of Lm contamination. A
stochastic process of complete elimination was observed for
Lm inoculated at 102 CFU/g on cold-smoked salmon that
was then treated with 250 ppm of nisin (14); thus, future
models may benefit from refining the approach used to
predict nisin-dependent elimination of Lm from a packaged
product because the current approach may overestimate the
prevalence reduction induced by nisin treatments.

Compared with nisin treatments, interventions that
targeted a 50% reduction in the prevalence of Lm were less
effective for reducing RR risks. However, the reduction in
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RR risks achieved by a 50% reduction in Lm prevalence was
considerably higher than reductions in RR risks that could
be achieved by bacteriostatic growth inhibitors (potassium
lactate and sodium diacetate) or by controlling storage
temperature (which also reduced Lm growth and hence
could be considered bacteriostatic). In contrast, reports of
public health risk assessments for Lm have typically
suggested that interventions that reduced growth (e.g.,
controlling storage and distribution temperatures and use of
growth inhibitors) had a larger impact on frequency of
human listeriosis cases than did interventions that reduced
Lm prevalence (28, 37, 66, 83). This difference in the effects
of various control strategies on RR risks versus public
health risks is logical and consistent with our knowledge of
the biology of Lm. Most listeriosis cases are attributed to
products contaminated with high levels of Lm (65, 82).
Based on current U.S. regulations, products positive for Lm
in a 25-g sample will trigger a recall or other regulatory
consequences regardless of the contamination level. As-
suming reliable and sensitive tests, regulatory consequences
are equally likely to be triggered by products that are
contaminated at 100 and at 10 million Lm cells per package.
Hence our model further illustrates the importance of
regulatory policies based on the public health risk because
policies based on only presence or absence of a hazard (e.g.,
Lm) may inadvertently incentivize interventions that
prioritize reductions of RR risks over reductions of public
health risks. Until new regulatory policies are implemented,
processors face a dilemma as they decide on the relative
importance of reducing RR risks and reducing public health
risks associated with their products. Most likely, processor
will try to comanage both types of risks, which means that
some resources that will be dedicated to reducing RR risks
would be better used to further reduce public health risks.

In conclusion, we developed a framework for a
modeling approach for assessing the risk of food recalls or
other regulatory consequences due to Lm contamination.
Using this framework, the 3R model was developed as a
decision support tool for producers to reduce the RR risks of
cold-smoked salmon products through improvement of
relevant data collection and/or identification and optimiza-
tion of interventions for controlling Lm. The 3R model is
complementary to but distinct from the existing public health
risk assessment models because it focuses on assessing the
risk of food recalls or other regulatory consequences instead
of human listeriosis cases and thus bypasses the uncertainties
associated with the dose-response compartment. The data
gathered in this study indicate that reducing the prevalence
of Lm contamination is more effective for reducing RR risks
than is preventing the growth of Lm to high levels on
contaminated products, which is more effective for reducing
human listeriosis risks. This finding suggests a new
paradigm for incorporating public health risk policies into
the regulations for Lm in smoked seafood products because
the current policies may inadvertently incentivize use of
strategies that reduce RR risks over strategies that reduce
public health risks (i.e., the risk of human listeriosis cases).
Nisin treatment of cold-smoked salmon products was
predicted to lead to the greatest reduction in RR risks, likely

because of the dual effect of nisin for reducing both Lm
prevalence and initial Lm contamination levels. To further
improve the prediction of RR risks, resources should be
focused on collection of data about Lm prevalence and initial
contamination levels and product storage temperatures. Data
for die-off and growth kinetic parameters of Lm on cold-
smoked salmon treated with various antimicrobials can be
used to expand the model to assess the impact of other
antimicrobials on RR risks.
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